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Promotion of cooperation by payoff noise in a 2X2 game
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A series of numerical simulations of a 2 X 2 symmetric game on a network examined whether payoff matrix
noise promotes cooperation, as reported initially by Perc [New J. Phys. 8, 22 (2006)]. Agents have no memory
(they offer cooperation, C, or defection, D). We assume that the network is time invariable. The effect of payoff
matrix noise (PMN) is measured by a simulated payoff difference between a normal network game and a
network game with PMN. The effect of PMN appears only when a local strategy adaptation is implemented
(for example, a network game with imitation dynamics). The influence of PMN becomes more significant with

a larger stochastic deviation, and less significant in a larger degree network. One reason for PMN’s effective-
ness is the local strategy adaptation mechanism, which helps both the preservation and fixation of C agents,
and not that the payoff matrix noise makes a dilemma game into a Trivial (dilemma-free) game.
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I. INTRODUCTION

The emergence of cooperation in overcoming a dilemma
has been explained by several theories. In terms of evolu-
tionary game theory, Nowak [1] classified five mechanisms
that make cooperation (C) evolve instead of defection (D):
Kin selection, direct reciprocity, indirect reciprocity, network
reciprocity, and group selection. Network reciprocity relies
on two effects. The first is limiting the number of game op-
ponents (depressing anonymity), which leads to a rise in mu-
tual cooperation, and the second is a local adaptation mecha-
nism, in which an agent copies a strategy from a neighbor
linked by a network. These explain how C agents survive in
a network game of Prisoner’s Dilemma (PD), e.g., even
though it requires agents to use only the simplest strategy—
either C or D.

In the past few years, many studies have dealt with net-
work reciprocity. Masuda and Aihara [2] investigated how
cooperation emerges, with the spatial Prisoner’s Dilemma
(PD) played on a class of networks ranging from a regular
lattice to random networks through small-world (SW) topol-
ogy. They concluded that SW is the optimum structure for
enabling cooperators to thrive through cluster formation.
Hauert and Szabo [3] reported a series of similar experiments
with a remark that the advantages that elicit cooperation
through networks work, but are rather limited. Tomochi [4]
insisted that SW networks, which get increasingly disordered
(e.g., the shortcut probability increases), decrease the coop-
eration fraction. In relation to this point, Ren et al. [5] sug-
gested the presence of shortcuts in SW as randomness in the
network. They demonstrated that a system with such ran-
domness often evolves into a cooperative state; however,
there is an optimal amount of randomness, which induces the
highest level of cooperation. Further, they pointed out that
the mechanism by which randomness promotes cooperation
resembles a resonance. Tomassini et al. [6] examined SW
networks for Chicken games, insisting that cooperation is
sometimes inhibited and sometimes enhanced, depending on
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the update rules (whether they are asynchronous or synchro-
nous, replicator dynamic update or proportional update, etc.)
and the game structure.

Another important heterogeneous network is the scale-
free (SF) network. Several studies (e.g., Gomez-Gardenes
[7]; Santos and Pacheco [8]; Santos er al. [9]; Tang er al.
[10]) reported that cooperation is enhanced in SF networks,
since they form a single cluster containing the most con-
nected players (hubs). However, Hu er al. [11] reported that,
for a SF network, the assumption of whether the maximum
degree hub agent is C or D at the beginning of a simulation
episode crucially affects the dynamics that follow—almost
determining whether the equilibrium would be a cooperative
or defective phase. Lopez-Pintado [12] examined Stag Hunt
games on a SF network, and found that SFs do not always
support this type of contagion.

Beyond those studies that deal with a dilemma game on a
fixed network, Ohtsuki and his colleagues obtained a simple
principle by a series of analytical approaches with supple-
mentary simulation studies [13-15]. Assuming a Donor-
Recipient game (a special type of PD having P=0, R=b—c,
S=-c, and T=b, where P, R, S, and T are game-intrinsic
elements, as explained later in the Model section), they de-
scribe a surprisingly simple rule that is a good approximation
for all graphs, including cycles, spatial lattices, random regu-
lar graphs, random graphs, and SF networks. Natural selec-
tion favors cooperation if the benefit of the altruistic act b
divided by the cost ¢ exceeds the average number of neigh-
bors k (average degree), which means b/c>k. If a game
satisfies b/c >k, which is very analogous to Hamilton’s rule
[1] (b/c>1/r, where r is relatedness), cooperation can
evolve. Their finding shows that network reciprocity is
mostly determined by the average degree, irrespective of the
type of network assumed, if a Donor-Recipient game is as-
sumed.

Those earlier studies are based on a framework where
agents are initially allocated in a fixed network. Zimmer-
mann ef al. [16] demonstrated a variant of a coevolution
system in a networking game. Their model can consider si-
multaneous evolution of networks and strategy. Applying this
model to several PDs, they observed a stable cooperation
phase when a cooperative hub agent (which they called a
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TABLE 1. Payoff matrix for a 2 X2 game.

Opponent
Cooperation Defect
Focal Cooperation (C) R+vupg S+ug
Defect (D) T+ur P+up

C leader) emerged, resulting in C chains. Another significant
study, by Pacheco et al. [17,18], deals with both networking
and strategy adaptations. They adopted two parameters: A
time scale for strategy updating and another for network up-
dating. When the former is smaller than the latter, this would
be an evolutionary game in a fixed network. Assuming a
complete graph as an initial network, this case can be ana-
lytically dealt with using the replicator dynamics of a 2 X2
game. They are analytically formulated for situations where
the network updating scale is much less than that for strategy
updating, which can also be evaluated by other replicator
dynamics using the 2 X2 game matrix that is revised from
the original. Their findings are not directly applicable to situ-
ations when both time scales seem to be close. These must be
solved by a numerical approach, such as that used by Zim-
mermann et al.

In evolutionary games with network reciprocity, the effect
of noise (or randomness, in other words) becomes important,
since the noise may enhance phase change from a defector
dominant state to a cooperator dominant state, which occurs
in a resonancelike fashion. The network noise effect as in
Ren’s statement [5] is a resonance phenomenon. Szabo et al.
[19] and Vukov er al. [20] studied PD on several network
topologies, focusing on the effects of payoffs (dilemma
strength) and noise on the maintenance of cooperation. The
“noise” in their terminology means randomness in the pro-
cess of strategy adaptation, and is usually called “tempera-
ture” K in the Fermi function. They found that a noise effect
is influenced by the underlying network structure, especially
in networks containing a “one-site overlapping triangle.”

Perc and his colleagues presented comprehensive reports
on this kind of resonance phenomenon. Initially, Perc [21]
presented a report which dealt with the payoff matrix noise
(PMN). PMN is defined as the deviations from each P, R, S,
and T (in the present paper, those are defined by vp, vg, Us,
and vy as shown in Table I). He observed a considerable
amount of resonance from PMN, of which standard deviation
o is subjected to temporally and spatially white additive
Gaussian noise. Later, Perc and Marhl [22] examined nu-
merical calculations with the two- and three-strategy pair ap-
proximated analytical approach for PD assuming k=4. To
compare these, they demonstrated two resonance effects:
One from the noise defined by temperature K and the other
from PMN. Perc [23] also focused on superposed resonance
effects from PMN and network noise. For the PMN, in ad-
dition to the Gaussian noise, he examined Levy distribution
[24] and chaos variables [25].

Limiting this discussion to the effects of a stochastically
deviated payoff matrix, we must cite the work of Eriksson
and Lindgren (e.g., [26,27]) as a precursor. They examined
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how cooperation emerges, and what complex strategies (not
simply C or D) evolve when repeated games with stochastic
observable payoffs are imposed on agents.

Guan et al. [28] investigated what happens when an agent
observes amplified payoffs for neighbors in a copy strategy
event in a networked PD game. They found a robust
C-support effect, although it seems trivial. Because an am-
plified payoff they defined indicates a positive bias from the
original payoff structure, it always increases C agents in a
PD.

In Perc’s studies [21,24,25], he also reported that PMN
can promote cooperation in PD on a 2D lattice network with
degree k=4. In their model, an agent plays PD games with
four von Neumann neighbors, and copies the strategy (either
C or D) from one of them, according to the Fermi function
defined by the payoff difference between himself and each
neighbor. In their model, the dilemma can be resolved locally
(a PD can be transformed into a dilemma-free game, i.e.,
Trivial game) by implementing a larger PMN (namely, larger
o), even though the noise average remains zero. In this case,
the efficient C-support phenomenon reported by Perc can be
attributed to the game class transformation that we discuss
later. This raises a substantial question about how PMN sup-
ports cooperation, if the game class (in other words, dilemma
strength) is preserved. The present study focuses on this
question across a range of network topologies and game
structure, which might help in further understanding the
resonance effect promoted by the PMN, originally observed
by Perc. The resonance effect of PMN might be interesting
not only to physicists but also to social scientists, because the
effect might be linked to the global behavior of stock mar-
kets under a nonuniform information environment.

II. MODEL

Let us presume a 2 X2 game on a time-constant network.
The number of agents in the society is N. Each agent has k
links, which means the degree of an agent is maintained at k.
Table I indicates respective payoffs, determined by strategies
of both focal and opponent agents (either C or D). Additive
components to game intrinsic elements (P, R, S, and T); vp,
Ug, Usg, and vy, are stochastic variables, obeying a Gaussian
distribution, for which average (u) and standard deviation
(o) are defined as 0 and a X (R—P), respectively. Parameter
a indicates an amplification. The set vp, v, vg, and vy indi-
cates a Gaussian noise. An agent plays k different games,
since a set of additive components is defined in each network
link.

According to Tanimoto and Sagara [29], every game de-
fined in a 2 X2 game space can be expressed by

w
P=xy-0.5r cos(z>, (1)
T
R=xy+0.5r, cos<z>, (2)
o
S=x0+r2cos(z+0>, (3)
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FIG. 1. Schematic expression of a 2X2 game. This example
indicates a PD. X axis and Y axis indicate both players’ payoffs.
Open circle indicates that focal player adopts a cooperation strategy
(C), while closed circle indicates that focal player defects (D).

o
T=xy+r, sm(z + 0). 4)

Figure 1 shows a schematic expression of Eq. (1). As
shown in Fig. 1, the expression of Eq. (1) provides a straight-
forward understanding of the geometric relation between a
possible solution set and the game structure of an arbitrary
2 X2 game. Since x, is independent of the relative relation-
ships among payoffs, a single set of two parameters, r
=r,/r; and 6 (rad), is sufficient to see the entire 2 X 2 game
world, as shown in Fig. 2. One marvelous feature is that this
allows us to draw the well-known typical dilemma games,
such as PD, Chicken, Stag Hunt (SH), Leader, and Hero, and
illustrate the regions in which they occur. Tanimoto and Sa-
gara [29] also show that dilemma in a 2X2 game can be
quantified with two game structural parameters—D,=T-R
and D,=P-S. D, indicates the static-dilemma intensity—the

Leader & SH Anti-Leader & Chicken
4 T
T+P<R+S T+P>R+S
| Contour line when
é T+P=R+s |—P
Anti- Hero JAnti-
Hero Hero
Leader
r={6/2
r=1/2
r=y"2/4 Chicken Stag Hunt
Vi . 1 L I L 1 1
-7/2 0 Tc/2\ T
Avatamsaka
0 [rad]

FIG. 2. Scene of 2 X2 game world. According to Tanimoto and
Sagara [29], any 2 X2 game can be parametrized by two game-
structural parameters, » and 6. Any game classes, including di-
lemma games such as PD, Chicken, SH, and even a trivial game can
be drawn schematically. One specific game, called Avatamsaka, de-
vised by Akiyama and Aruka [33], stands on a marginal point be-
tween dilemma and trivial games.
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inclination of two equal players to exploit each other. They
call this situation the gamble-intending dilemma (GID).
Moreover, D, indicates the static-dilemma intensity of equal
players trying never to be exploited. This is called a risk-
aversion dilemma (RAD). They also showed that the actual
game dilemma can be explained by the game’s structure
(static elements—D, and D,) and dynamic influences.

It might seem that the description in Eq. (1), based on
polar coordinates, is more particular than those presented by
early studies (e.g., [30,31]). However, this method is useful
in understanding the following points. As explained in later
parts, we divide the PMN into two types; x, fluctuation (vp
=vg=vg=vy) and game-class fluctuation (independent vp,
Ug» Us, and v). From Fig. 1, Table I, and Eq. (1), we can say
that adding the same noise to game intrinsic elements
(namely, giving vp=vr=vs=vy) preserves a relative relation
among P, R, S, and T, which can be paraphrased by saying
that x, fluctuates around P, R, S, and 7, but never changes
the game class. For example, if a PD satisfies vp=vgp=vg
=vy, the PMN never changes the game class of the PD, since
the x, fluctuation does not affect D, and D,. On the other
hand, for game-class fluctuation, if vp, vp, vg, and vy are
completely independent, the relative relation among P, R, S,
and T can be changed, which means the PMN undergoes a
game class transformation.

When g(w,o) expresses a random number, obeying a
Gaussian distribution defined by w and o, the x; fluctuation
assumes the following:

vp=vp=vs=0v7=¢{0,0),
and the game class fluctuation assumes

vp=¢gi(0,0), UR=gj(O»U')’ vs=gi0,0), vr=g(0,0).

An agent in the present model has no memory. Each agent
deterministically copies the strategy (either C or D) from one
of his k neighbors (agents connected by his links) who ob-
tained the largest payoff in the previous time step. This is
called imitation dynamics. These strategy adaptation pro-
cesses operate synchronously.

We investigate several networks: 1D ring (1D-R), 2D lat-
tice (2D-L), and regular random network (RRG), by varying
k=4, 8, and 16.

III. NUMERICAL EXPERIMENT

The assumed experimental parameters are N=2500, r,
=1.272, and x,=0. Quantitative assumptions of both game
structural parameters r; and x, are not substantial, since r
and 6 together are sufficient to visualize the entire 2 X2
game world, as explained in the preceding section. The ini-
tial distribution of C, imposed at the beginning state of every
simulation episode, is assumed to be 0.5. The results we
discuss below were confirmed robust for those parameters.
We vary the game structure —%ws o< %77 and 0<r=<>5 in
Eq. (1) (or Fig. 1). The contours shown are drawn by en-
semble averages of five equilibrium trials (quasi-steady state
of the dynamics) for respective game structures (we con-
firmed that a five-ensemble average seems acceptable to ob-
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FIG. 3. (Color online) Simulation results of the payoff. (A) Analytic solution (AS); (B) payoff differences between GA with the PMN by
the x fluctuation and AS; (C) GA with the PMN by the game-class fluctuation and AS; (D) 1D k=4 network and AS; (E) 1D k=4 networks
with and without the PMN by the x, fluctuation; (F) 1D k=4 networks with and without the PMN by the game-class fluctuation. + and —

indicate positive and negative differences, respectively.

serve the general tendency discussed in the following text).
One simulation episode runs until the time variations of
social-averaged cooperation fraction and payoff can be re-
garded sufficiently small—after 2000 time steps, which
seems an asymptotic equilibrium.
Parameter a in a Gaussian noise is basically assumed to
be 0.1.

IV. RESULTS
PMN effect on a network

It might be interesting to confirm whether the PMN reso-
nance effect works only on a network structure, or whether it
also works in a well-mixed population, implying a global
strategy adaptation system.

Figure 3(A) indicates the payoff of an analytic solution
(AS) based on replicator dynamics, normalized by (R-P).
Because x(=0, the values of R and P in this graph are 0.5
and —0.5, respectively. The AS from replicator dynamics as-
sumes infinite N and a well-mixed population.

Figures 3(B) and 3(C) indicate payoff differences between
using a genetic algorithm (GA) for global adaptation and
using AS. In Fig. 3(B), vp=vz=vs=vy is assumed (x, fluc-

tuation case), which means there is no game class fluctuation
but just an x fluctuation, since the relative relation among P,
R, S, and T is preserved, as explained earlier. Whereas, in
Fig. 3(C), vp, vg, vs, and vy are independent Gaussian noises
(game class fluctuation), in which the game class may be
transformed locally, for instance from a PD to Trivial
(dilemma-free game). Those two payoff differences are also
normalized by (R-P) (all the following results are the
same). Since we cannot observe any significant differences
with AS, this implies that the PMN never works to encourage
cooperation under a global strategy adaptation system, such
as GA.

Figure 3(D) shows a payoff difference between 1D-R, k
=4, and AS, which implies the effectiveness of a network in
the absence of other C-support mechanisms. We can see ob-
vious network effectiveness in area (ii) spanning from
Chicken to PD, SH, and Anti-Leader (confirm in Fig. 1).
Nowak [1] called this network reciprocity. In this particular
game area, because of the relatively small dilemma strength
expressed by D, and D,, the network effect can lead a game
trail to a cooperative state (all cooperators or coexistence
cooperators and defectors at least), by forming C clusters.
However, a negative effectiveness is spreading in Leader
and Hero. In those two particular game areas satisfying

041130-4



PROMOTION OF COOPERATION BY PAYOFF NOISE IN ...

A) ‘ B)

PHYSICAL REVIEW E 76, 041130 (2007)

5
4 | 1
0.8
- i 0.6
s 04
0.2
29 1 0
-0.2
1 b -04
-0.6
0 T T T T T T T T T T '(1)'8
-3n/4 -1t/4 /4 3n/4 Sn/4 -3n/4 -nt/4 /4 3n/4 S7/4 )
0 [rad]

FIG. 4. (Color online) Simulation results of the payoff indicating payoff differences between with and without the PMN by the
xo fluctuation on 1D k=4 networks. (A) assumes Gaussian distribution with ¢=0.3 X (R—P). (B) assumes uniform distribution with
0=0.1X(R-P). + and — indicate positive and negative differences, respectively.

S+T>2R, R-reciprocity—where both agents offer C—is
less effective in obtaining a higher payoff than
ST-reciprocity—where focal and opponent agents offer C
and D alternately [32]. Thus the network reciprocity does not
support ST-reciprocity in Leader and Hero games.

Area (i) (in Anti-Leader spanning to Anti-Hero) indicates
a negative network effect from the AS. In this area, the game
structure satisfies P> and P>T. In the case of an AS with
no mechanisms to support cooperation, Anti-Leader and
Anti-Hero lead to an all-defection state (every agent obtains
P), if the initial C distribution is 0.5 [see Fig. 3(A)]. But in
area (i), despite the instinct game structure that encourages
obtaining P, mutual defections become impossible due to the
network effect. In this area, very few small C clusters can
remain in a D majority. A central agent in the C cluster
obtains R (the largest payoff), but neighboring D agents on
the border of the C-D front impose S (the least payoff if in
Anti-Leader) on the C agents. These C agents cannot change
their strategy from C to D, because the central C agent com-
pels them to retain C by copying. This is why certain frac-
tions of S and T occur in the area, which leads to a social-
average payoff less than the AS.

One might notice that the area of positive effectiveness
(or even the negative effectiveness area in Anti-Leader) does
not coincide with the game borders. This is not unusual,
because the graph indicates the payoff difference, e.g., in the
case of PDs having 6=0 (these are Donor and Recipient
games, a special case of the PD game class) that network
reciprocity works effectively only to support cooperation
within a smaller or moderate dilemma strength, where the
area of positive effectiveness [area (ii)] is observed. With
increasing r (increasing dilemma strength), network reci-
procity becomes insufficient to support cooperation, of
which equilibrium is led to all defectors state that is the same
as the case for AS [shown by empty space in Fig. 3(D)].

Figure 3(E) shows a payoff difference between consider-
ing and neglecting the x, fluctuation for a 1D-R, k=4 net-
work, which precisely indicates the effectiveness of PMN in
encouraging cooperation on the basis of the network struc-
ture through x, fluctuation. Figure 3(F) shows the payoff
difference between considering and neglecting the game-
class fluctuation for a 1D-R, k=4 network. These payoff dif-
ferences are not with AS [as in Figs. 3(B) and 3(C)] but with

the payoff only considering network reciprocity (ID-R, k
=4 in those two cases) to determine the effectiveness of
PMN ceither by x, fluctuation or game-class fluctuation (all
the following results are expressed in same manner). Figure
3(D) indicates the impact of topology, and Figs. 3(E) and
3(F) show the further impact of noise.

One thing to note here is the obvious effectiveness of
PMN in the relatively narrow area spanning from Chicken to
PD, SH, and Anti-Leader. This, added to what we observed
in Figs. 3(B) and 3(C), implies that PMN only works to
encourage cooperation under a local strategy adaptation sys-
tem, such as games on a network. In addition, we also should
note that the effectiveness of PNM over network reciprocity
seems only moderate. Noting that area (iii) in Fig. 3(E) is
almost consistent with area (i) of Fig. 3(D), we assume that
the negative network effect is diluted in area (iii) due to the
effect of PMN. Moreover, we notice that the other positive
area, besides area (iii) in Fig. 3(E), is on the boundary of area
(ii), Fig. 3(D). We infer from this that the PMN effect is
significant in bolstering the positive network effect and in
alleviating the negative network effect in Anti-Leader and
Anti-Leader region.

Another important point to note is that the PMN effect is
sufficient due to a local-payoff fluctuation, since we observe
no significant difference between Figs. 3(E) and 3(F). This
seems interesting because it implies that the resonance effect
required to support cooperation does not come from game
class alterations brought on by PMN.

Hence we only see the x; fluctuation cases in the follow-
ing text.

Influence of noise quality and quantity

Figure 4(A) shows the payoff difference between consid-
ering and neglecting the x, fluctuation for a 1D-R, k=4 net-
work in which the standard deviation (SD) of the Gaussian
distribution o for the x, fluctuation is assumed to be 0.3
X (R-P) [a=0.3 is assumed instead of 0.1, as in Fig. 3(E)].
The result of comparison of Fig. 3(E) to this proves that the
effectiveness of PMN increases with an increase in matrix
noise o.

Figure 4(B) shows the payoff difference between consid-
ering and neglecting the x, fluctuation for a 1D-R, k=4 net-
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FIG. 5. (Color online) Simulation results of the payoff indicating payoff differences between with and without the PMN by the x
fluctuation assuming Gaussian distribution with 0=0.1 X (R-P). (A) 1D k=8, (B) 1D k=16 networks, (C) 2D k=4 networks (von Neumann
lattice), (D) 2D k=8 networks (Moore lattice), (E) 2D k=16 networks, and (F) 2D k=4 Random Regular networks. + indicates positive

difference.

work in which the x fluctuation assumes a uniform distribu-
tion with 0=0.1 X (R—P). Compared with Fig. 3(E), there is
no significant difference, which implies that PMN’s effec-
tiveness is insensitive to the assumed probabilistic distribu-
tion when the same SD is imposed.

Influence of networks on PMN

It might be interesting to investigate how different net-
work topologies affect PMN'’s effectiveness. In the following
results, all the cases assume a Gaussian distribution o=0.1
X (R-P) when considering the x, fluctuation. Figure 5(A)
indicates a payoff difference between considering and ne-
glecting the x, fluctuation for a 1D-R, k=8 network. Figures
5(B)-5(F) are for 1D-R, k=16; 2D-L, k=4 (von Neumann
lattice); 2D-L, k=8 (Moore lattice); 2D-L, k=16; and RRG,
k=4, respectively.

Both 2D-L, k=4 and RRG, k=4 cases show the effective-
ness of PMN in the Anti-Leader area, while other cases only
show a few positive areas. Observing those results, we notice
that the effectiveness of PMN in Fig. 3(E) fades rapidly as
the degree of the network increases.

Ohtsuki ef al. [15] analytically proved that the advantage
of network reciprocity disappears in a large-degree network,
since that situation approximates a well-mixed population.

The average network path length (L) and the cluster coeffi-
cient (C) are well-known parameters (as well as the average
degree k) for evaluating network characteristics. In particu-
lar, L seems appropriate for evaluating how slowly a local
strategy spreads into the population, which indicates the ad-
vantage of a local strategy adaptation over a global strategy
adaptation. In general, a smaller L indicates that the situation
approximates a well-mixed population, while a structural
network has a larger L. Table II shows both L and C for each
network. As shown in Fig. 5, PMN’s effectiveness for RRG,
k=4 is almost the same as for 2D-L, k=4, and is much
greater than that for 1D-R, k=16, even though the L for
RRG, k=4 is smaller than either 2D-L, k=4 or 1D-R, k
=16. This implies that PMN’s effectiveness is not dependent
on the average path length, but depends strongly on the de-
gree of a network. As mentioned before, network reciprocity
relies on two effects: Limiting the number of game oppo-
nents (depressing anonymity) and the local strategy adapta-
tion mechanism. In terms of depressing anonymity, a regular
graph is superior to a RRG, when they have a same degree.
Comparing Figs. 5(C) and 5(F), we observe that depressing
anonymity seems ineffective for PMN’s effectiveness. There-
fore, from a qualitative point of view, the local strategy ad-
aptation mechanism seems more meaningful for the PMN’s
effectiveness on a network than depressing anonymity.
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TABLE II. Cluster coefficient and average path length for each
network.

Network Degree, Cluster Average length
structure K coefficient, C of path, L
1D 4 49x107! 312.0

8 6.4x 107! 156.6

16 6.7x 107! 78.6
2D 4 0 25.0

8 4.3x 107! 16.7

16 4.0%x 107! 7.0
Random 4.0%x 1074 6.4
regular 8 23%1073 4.0
graph 16 9.4% 1073 29

V. DISCUSSION

In a series of Perc’s studies, the supporting C effect might
come from game-class fluctuations, where the PD transforms
to Trivial (dilemma-free game), because of the PMN [24].
The present report, however, proved that there is no signifi-
cant difference between the game-class fluctuation and x
fluctuation under the assumed SD range. Even if a game-
class alteration does not occur locally, a C-supporting effect
can be encouraged; an agent copies the C strategy from a
neighboring C agent who obtains a high payoff because of
the payoff matrix noise, even though this particular neighbor
might be exploited by D agents. Note that the C-support
effect of PMN arises only from x, fluctuation. This implies
that the substance of the PMN does not come from game-
class alteration occurring locally, but rather from the local-
strategy adaptation system, where imitation dynamics pro-
vides possibilities for preserving C strategy in some local
patches.
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However, under the assumptions we imposed for the
PMN, network reciprocity seems more important than PMN
in obtaining a high payoff or high cooperation fraction. As
Nowak indicated [1], network reciprocity is more effective
for a smaller k (cooperation can evolve in the PD defined by
P=0, R=b-c, S=—c, and T=b if 1/k>c/b is satisfied).
Considering both Nowak’s statement and the present result,
we expect a larger C-support effect in a dilemma game in-
tending R reciprocity, if the PMN is combined with a smaller
degree network.

VI. CONCLUSIONS

We investigated the effect of payoff matrix noise (PMN)
by varying the network and 2 X 2 game structures. The PMN,
originally reported by Perc, states that a probabilistic fluctua-
tion, having a zero average and a certain SD, applied to
game-intrinsic elements encourages a higher C fraction in a
dilemma game with a network structure.

(1) The PMN never works under a global-strategy adap-
tation system, such as GA, for a well-mixed population.

(2) The PMN works when a local-strategy adaptation sys-
tem is assumed. Hence this effect can be applicable to a
dilemma game in a network structure, where an agent copies
C or D from his neighbors for the next time step. However,
the PMN appears in a limited fashion, within a narrow
dilemma-game region, spanning from Chicken to PD, SH,
and Anti-Leader, where the network reciprocity can solve the
dilemma.

(3) The PMN works sufficiently only because of the x,
fluctuations that do not require independent noises—
allowing, for example, game-class alteration from a PD to
Trivial (dilemma-free game).

(4) The PMN is significantly influenced by both the de-
viation of the fluctuation and the degree of the network.
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